Skip to main content

tv   Democracy Now  LINKTV  October 29, 2014 4:00pm-5:01pm PDT

4:00 pm
annenberg media ♪ by: narrador: bienvenidos a otro episodio de destinos: an introduction to spanish. primero, algunas escenas de este episodio. hola, raquel. i¿luis?! sí, raquel, soy yo. ivaya sorpresa!
4:01 pm
¿y qué haces aquí? ¿has notado cómo se miran raquel y tío arturo? sí, hacen una buena pareja. arturo: ¿ud. también es méxicoamericano? no, soy mexicano. pero vivo desde hace muchos años en los estados unidos. claro, y ahí conoció a raquel. pues, sí. nos conocimos en la universidad de california. ¿te acuerdas? en este episodio vamos a ver cómo se pide en un restaurante. ¿en qué consiste una cena? ¿qué se dice en un restaurante? primero, viene el camarero a preguntarles a los clientes qué van a tomar. ¿desean algo de tomar? después, el camarero les pregunta si quieren un plato para comenzar. ¿no desean algo para comenzar?
4:02 pm
también les toma la orden para el plato principal. ¿están listos para ordenar? luis: después viví muchos años en nueva york por razones de trabajo. pero ahora he vuelto a los angeles para quedarme. captioning of this program is made possible by the annenberg/cpb project and the geraldine r. dodge foundation. en el episodio previo angela y roberto iban a conocer a su abuelo, don fernando. estaban un poco nerviosos. por fin conoceremos al abuelo.
4:03 pm
estoy... ¿nerviosa? sí, pero... muy contenta. entiendo perfectamente. yo también. raquel: arturo, ino está! ¿cómo? don fernando no está. ila habitación está vacía! al entrar raquel en el cuarto de don fernando descubrió que no estaba. ven. no está. no hay nadie. ( sirena ) una enfermera les explicó que habían llevado a don fernando a guadalajara. vinimos a ver al señor fernando castillo y no hay nadie en la habitación. ¿el señor castillo? claro, ya se fue. ¿cómo que se fue? ¿adónde? pues, a guadalajara. i¿a guadalajara?! mientras tanto, en la casa de pedro carlos empezó a contarle a su familia el secreto que ocultaba. gloria juega. pedro: ¿juega? ¿quieres decir, por dinero? carlos: sí, es... como un vicio, y...
4:04 pm
no para. pero, ¿qué necesidad hay de vender el apartamento? más tarde, angela y roberto hablaban de la venta del apartamento en san juan. a mí me dan tristeza los recuerdos. ¿quieres decir que no tienes otros motivos? y roberto acusó a angela de tener motivos personales. ia ver, dímelo! esto ya lo hablamos hace una semana. angela quiere darle parte del dinero a su novio, jorge. es otra vez la señora, lópez de estrada. ¿quién es? una agente de bienes raíces. un empresario de los estados unidos quiere comprar la gavia. nos ha hecho una oferta. ¿comprar la gavia? ¿y desde cuándo está en venta? ila hacienda es lo que más quiere papá!
4:05 pm
al final, raquel y arturo decidieron ir a cenar. si es una invitación a cenar antes debo subir a mi habitación. bueno, nos encontramos abajo en quince minutos. media hora. bueno. raquel no sabía que le esperaba una sorpresa. buenas. buenas.
4:06 pm
hola, raquel. i¿luis?! sí, raquel, soy yo. ivaya sorpresa! ¿y qué haces aquí? acabo de llegar a méxico. raquel: ¿estás alojado aquí en este hotel? sí. disculpen. arturo...
4:07 pm
él es luis villareal. es... un viejo amigo mío. el doctor arturo iglesias es un buen amigo de argentina. mucho gusto. el gusto es mío. bueno... pues, iésta sí es una verdadera sorpresa! luis, arturo y yo íbamos a cenar. ¿quieres cenar con nosotros? no, gracias. no quisiera ser una molestia, yo... por favor, no hay ninguna molestia. anda, ven. bueno, si insisten. pero yo invito. ino, faltaba más! invito yo. no, señor iyo los invito! así que, en esta noche en que raquel quería estar a solas con arturo luis los acompaña a cenar. ( tocan canción tradicional )
4:08 pm
van a "el refugio", un restaurante con música típica y de muy buena comida. buenas noches. todos: buenas noches. ¿desean algo de tomar? sí, gracias. mmm, yo quiero... un margarita, por favor. ¿cómo no? ¿y ud., señor? para mí también. bueno, que sean tres. tres margaritas. con permiso. sí. ( suspira ) ( suspira ) ¿ud. también es méxicoamericano? no. soy mexicano, pero vivo desde hace muchos años en los estados unidos. claro, ahí conoció a raquel. pues, sí. nos conocimos en la universidad de california. ¿te acuerdas? después viví muchos años en nueva york por razones de trabajo. pero ahora he vuelto a los angeles para quedarme.
4:09 pm
arturo: ¿algún hombre habrá vivido en tu vida? hubo uno. nos conocimos en la universidad de california. el estudiaba administración de empresas. ¿y...? después de graduarse consiguió un buen trabajo en nueva york y se fue a vivir allá. y uds., ¿dónde se conocieron? en buenos aires. vaya. ¿y qué hacías tú en buenos aires? asuntos de trabajo. hacía una investigación. es una larga historia. es bonita esa pulsera. gracias, es un regalo de arturo. ¿y en qué trabaja ud., arturo? soy psiquiatra. y también doy clases en la universidad. no sé si creo en la terapia psicológica. ¿no cree ud. que las personas deben resolver sus problemas
4:10 pm
por su propia cuenta? bueno, eso depende del problema, ¿no? si ud. sufriera de una enfermedad física grave ¿no consultaría con un médico? con permiso. ah, gracias. gracias. ¿están listos para ordenar? sí. yo quiero pollo en mole, por favor. ¿ud., caballero? unas enchiladas verdes, por favor. ¿carne asada puede ser? ¿no le gustaría el plato surtido? trae distintas carnes. perfecto, gracias.
4:11 pm
¿no desean algo para comenzar? ¿unas quesadillas tal vez? no, gracias. traiga mejor una botella de vino tinto. con todo gusto. pues, salud. salud. salud. roberto: "me gustaría verlo otra vez, pero es imposible. es muy tarde". "el mar. mi inspiración... y mi destino final". ( suspira ) ¿qué increíble, no? ¿has notado cómo se miran raquel y tío arturo? sí, hacen una buena pareja. si se casaran entonces raquel sería nuestra tía. le he tomado mucho cariño. es casi como una hermana mayor para mí.
4:12 pm
a mí también me gusta mucho igual que tío arturo. bueno, es tarde. debes estar cansadísima. ay, bastante. ¿no te importa si hablamos del apartamento mañana? está bien... mañana. y luego llamamos a tío jaime. mientras tanto, en nueva york juan llega a su apartamento. pero no encuentra a pati. ( suspira )
4:13 pm
( suspira ) pati: a ver... va. hombre: ilaura! ( gritan ) mujer: laura, icorre, corre! iya, ya, ya! muy bien, muy bien. esa parte ya. raquel: y así fue como arturo y yo emprendimos la búsqueda que terminó cuando encontré a sus sobrinos en puerto rico. ahora están todos aquí para conocerse y conocer a su abuelo, don fernando. y tú, luis, ¿qué has hecho durante todos estos años?
4:14 pm
¿sigues trabajando en la misma compañía? no. al poco tiempo de estar en nueva york encontré una mejor oferta de trabajo. así que renuncié a mi antiguo puesto y me fui a esta nueva compañía. me ha ido muy bien, no me puedo quejar. soy ahora vicepresidente de la compañía. ¿y por qué has decidido regresar a los angeles? estamos por abrir una oficina en los angeles. iqué bien! me gustaría quedarme a vivir en los angeles. camarero: ¿todo bien? sí. ¿no desean algo más? no, muchas gracias. gracias. salud.
4:15 pm
todos: hasta luego. adiós. ¿vamos a tomar algo? bueno. me alegro de tener tu compañía. sí, pues entonces tú puedes invitar. toma tu chaqueta. sí. ¿viste que manuel se quedaba mirando la obra con mucha atención? ino! no lo vi. pues, sí. allí estaba sentado. ¿qué vas a hacer? no te preocupes, guillermo. ( música sigue ) ¿todo bien? sí, gracias. ¿no desean un postre?
4:16 pm
no. ¿café? todos: no, gracias. ¿la cuenta? sí. sí. gracias. ( arturo y luis protestan ) no, señor, invitó yo, por favor. no, de ninguna manera. ipor favor, no! es que yo les dije que había invitado. iay, basta! la que invita soy yo. ¿en qué consiste una cena? ¿qué se dice en un restaurante? primero, viene el camarero a preguntarles a los clientes qué van a tomar. buenas noches. todos: buenas noches. ¿desean algo de tomar? después, el camarero les pregunta si quieren un plato para comenzar.
4:17 pm
¿no desean algo para comenzar? también les toma la orden para el plato principal. ¿están listos para ordenar? un buen camarero siempre les pregunta a sus clientes cómo está todo, si necesitan algo más. ¿todo bien? sí. ¿no desean algo más? la última parte de la cena es el postre y el café. ¿no desean un postre?
4:18 pm
¿café? cuando ya han terminado, los clientes piden la cuenta. ¿café? todos: no, gracias. ¿la cuenta? sí. sí. como es costumbre aquí la propina está incluída en la cuenta. si el servicio ha sido muy bueno se debe dejar una propina adicional. ( ríen ) ya que don fernando no vuelve hasta pasado mañana tenemos el día libre mañana, ¿no es cierto? es verdad. raquel, ¿no llegan mañana tus padres? con que de argentina, ¿no?
4:19 pm
( arturo y luis charlan ) maría: hijita... te quería avisar que ya tenemos los boletos para méxico. te llamé a tu habitación, pero no estabas. ( teléfono suena ) ( suspira ) iahora comprendo! ahora comprendo por qué luis ha venido aquí, a este hotel. al principio no lo entendía. de verdad, creía que era pura coincidencia, ¿recuerdan? hola, raquel. i¿luis?! sí, raquel, soy yo. ivaya sorpresa! ¿y qué haces aquí? acabo de llegar a méxico. raquel: ¿estás alojado aquí en este hotel? sí.
4:20 pm
sí, ahora comprendo. seguramente mi mamá le dijo que yo estaría aquí. para mí fue una sorpresa. yo esperaba estar a solas con arturo. pero no tuve más remedio. tuve que invitar a luis a cenar con nosotros. yo no sabía cómo reaccionaría arturo. ¿y cómo reaccionó? ¿le molestó invitar a luis? arturo y yo íbamos a cenar. ¿quieres cenar con nosotros? no, gracias. no quisiera ser una molestia, yo... por favor, no hay ninguna molestia. anda, ven. a mí me parece que no le molestó. así es arturo. bueno, fuimos a un restaurante a cenar.
4:21 pm
yo estaba un poco inquieta pues no sabía si arturo había adivinado quién era luis. ¿qué creen uds.? luis: después viví muchos años en nueva york por razones de trabajo. pero ahora he vuelto a los angeles para quedarme. arturo: ¿algún hombre habrá vivido en tu vida? hubo uno. nos conocimos en la universidad de california. el estudiaba administración de empresas. ¿y...? después de graduarse consiguió un buen trabajo en nueva york y se fue a vivir allá. bueno. mañana hablaré con arturo sobre luis. en realidad, la cena no estuvo tan mal. supe lo que ha hecho luis durante los últimos años. ...y me fui a esta nueva compañía.
4:22 pm
me ha ido muy bien, no me puedo quejar. soy ahora vicepresidente de la compañía. imagínense. luis es ahora vicepresidente de una compañía. me pregunto: ¿cómo sería mi vida si yo todavía estuviera con luis? ¿cómo sería mi vida si yo viviera en nueva york? bueno. no hay por qué pensar en esas cosas. yo estoy contenta con mi vida, y eso es lo que importa, ¿no? mientras raquel cenaba con arturo y luis... sí, gracias. angela y roberto se quedaron en el hotel y hablaron de varios asuntos. ¿has notado cómo se miran raquel y tío arturo?
4:23 pm
sí, hacen una buena pareja. si se casaran entonces raquel sería nuestra tía. en nueva york, pati ensayaba con los actores y después salió con su asistente a tomar algo y conversar un rato. juan esperaba a pati en su apartamento. bueno. como decía antes, la cena no estuvo tan mal. sólo en un momento me sentí realmente incómoda. arturo le dijo a luis que era psiquiatra y luis le respondió que él no creía mucho en la psiquiatría. en ese momento, yo quería intervenir pero arturo se defendió. ¿recuerdan lo que arturo le respondió a luis?
4:24 pm
¿y en qué trabaja ud., arturo? soy psiquiatra. y también doy clases en la universidad. no sé si creo en la terapia psicológica. ¿no cree ud. que las personas deben resolver sus problemas por su propia cuenta? bueno, eso depende del problema, ¿no? si ud. sufriera de una enfermedad física grave ¿no consultaría con un médico? arturo le dijo que todo dependía del tipo de problema. si una persona sufriera de una enfermedad física consultaría con un médico, ¿no? al final, llegó la cuenta. arturo dijo que él pagaría. y claro, luis dijo que también él pagaría.
4:25 pm
al final, no pude más y yo pagué. claro, ¿por qué no? realmente fui yo quien invitó a luis a cenar. bueno, ya es tarde y dios sabe las sorpresas que me esperan para mañana.
4:26 pm
( teléfono suena ) ¿bueno? captioned by the caption center wgbh educational foundation
4:27 pm
annenberg media ♪ for information about this and other annenberg media programs call 1-800-learner and visit us at www.learner.org.
4:28 pm
4:29 pm
4:30 pm
4:31 pm
>> waves. light waves washing against our eyes, creating a vision of the world around us. [ thunder rumbling ] sound waves crashing against our ears, sometimes jarring and other times beautiful. cosmic waves bathing the universe. all of it explained, illuminated, and connected via mathematics. sometimes we call it harmonic analysis, other times we call it spectral analysis, but most people call it fourier analysis. of all these sensory
4:32 pm
experiences, perhaps music more than any other is the one that is most closely associated with mathematics. the greeks believed that beautiful music was mathematically based music and that there was a mystical connection between music and mathematics, that music was actually the mathematics of time. throughout history, music has been at the heart of human culture. its origins were most likely the patterns, rhythms, and tonalities of nature, sounds adapted and organized by humans to create melody, harmony, and rhythm. some of the earliest instruments were as simple as clapping hands. but it was the ancient greeks who first laid the foundations of our understanding of harmonics, how vibrating strings and columns of air produce overtones which are mathematically related. in fact, the word "music" itself derives from the muses, daughters of zeus and patron goddesses of creative and intellectual endeavors.
4:33 pm
the greeks applied the same rigors of rational thought to music as they did to everything else. pythagoras is said to have made the earliest acoustical observations when he described the arithmetic ratios of the harmonic intervals between notes, ratios which were based on the length of the object creating the sound. for example, octaves, 2:1. fifths, 3:2. and fourths, 4:3. for the greeks, these arithmetic ratios held great metaphysical significance because they believed that a single set of numbers from one to four was the source of all harmony. so their theories about music were intricately connected to their mathematical and philosophical description of the universe: how the planets, the sun and the stars vibrated in harmony, creating a "music of the spheres." in the ensuing 2,000 years, we've learned that this connection between math and music, whether mystical or not,
4:34 pm
is all about waves. sound is simply a disturbance of air, as pythagoras observed, a vibration, but as we now understand, a vibration that extends through space in the form of a wave. the initial disturbance can be caused by anything, and that anything is called an oscillator, like a vibrating string. but like ripples on a pond, the sound wave spreads when molecules in the air are disturbed and themselves begin to vibrate. the vibrating air molecules, in turn, bump into other nearby molecules, causing air pressure to compress and expand. this changing air pressure creates alternating waves that extend from the source of vibration. if a person is in the path of the sound wave and then the wave enters the ear, it's rapidly processed and recognized by the brain as sound. there are many different kinds of sound waves, but they all begin with a simple sinusoid, like this. [ plays sustained low note ]
4:35 pm
this is a perfect "a." and this, the s-curve, is the sinusoid that represents the sound. sinusoids are one of the simplest forms of what a mathematician would call a periodic function, which is a function that repeats over and over...or cycles through a specific period of time. we use the sinusoid to represent the periodic behavior of sound in its simplest, purest form. it's the most basic wave, moving in a simple harmonic motion with a perfect pattern of peaks and troughs. sinusoids are largely determined by two basic characteristics: amplitude, how high the wave goes up...and wavelength, which is the distance from trough to trough, or equivalently, frequency, which is the number of waves per unit length. amplitude and frequency have immediate psychoacoustic correlates as loudness and pitch. as you can see, the greater the disturbance, the greater the
4:36 pm
amplitude and the louder the sound. frequency is simply the number of waves in a given interval. the higher note has a higher frequency than the lower note. so frequency is a measure of pitch, and the geometry of these sinusoids explains why, when we play the higher and the lower a together, they sound good together. the sinusoids from each of these two notes fit perfectly inside one another. the higher a is the lower one squashed by one-half. of course, not all waves are perfect sinusoids. there are all sorts of waves. different objects create different types of waves, therefore different types of sound. strings are the source of some of the most beautiful music on earth. they have so many interesting characteristics. watch. [ plays low note ] when we play different strings, we create different sounds, therefore differently shaped sound waves.
4:37 pm
[ plays scale of notes ] the same thing happens when you pluck the same string at different positions. or when you play strings on different instruments. in each case, you create different sounds, therefore different sound waves. and when a variety of sound waves of different amplitudes, frequencies, and shapes are combined, we have music. [ playing song ] [ classical music plays ] but the music of the real world is comprised of complicated sound waves, not the simple,
4:38 pm
pure sinusoids we've just discussed. in fact, most sounds are composed of complicated waveforms, whether we're listening to a single instrument or a symphonic orchestra. and while the greeks may have deconstructed music into simple arithmetic ratios such as octaves, fourths, and fifths, how can we mathematically understand such complexity? for centuries, we couldn't. not until the early 1800s, when the eccentric french mathematician jean baptiste joseph fourier discovered that waves can be combined and separated. it was a discovery that no one believed at first but that changed music and math forever. fourier's revelations didn't begin with music, but rather, with his investigation of heat. friend and advisor to napoleon, fourier is said to have become obsessed with heat while accompanying bonaparte as chief science advisor on the 1798 military expedition to conquer egypt. fourier was apparently so
4:39 pm
impressed by the well-preserved sarcophagi that he kept his rooms uncomfortably hot for visitors while also wearing a heavy coat himself. the heated problem that fourier took on in his famous memoir, on the propagation of heat in solid objects, was the problem of heating and cooling of our earth, our own cycle of temperatures. the french mathematician developed his understanding of heat flow in terms of newton's law of cooling that says that the movement of heat between two bodies is proportional to their temperature difference. translating this to the infinitesimal scale of temperature differences between infinitely close positions in an object gives the famous differential equation called the "heat equation." in fourier's solution of the heat equation, he found these periodic solutions of sinusoids mirroring the cycle of temperatures over the year as the accumulation of periodic effects, such as the regular orbit around the sun and the daily spinning of the earth on its axis. fourier found that no matter how complicated a wave is, it's the
4:40 pm
sum of many simple waves. this was an astounding discovery. but for many years, few people believed his theories. after all, how could a complicated wave be reduced to the sum of seemingly many incompatible shapes: square waves and v-shaped waves have corners, while sinusoids are smooth. but over time, mathematicians affirmed fourier's discovery and came to refer to the unique set of simple waves that combine to form a more complicated wave as the wave's fourier series. so we're here with liz stanhope, professor of mathematics at lewis & clark college, and liz's research expertise lies at the intersection of fourier analysis and geometry. hi, liz. >> hi, dan. >> we're going ttalk a little bit about fourier, and my understanding is that when fourier introduced this at that time, i guess, it was an impossible idea that any function could be represented as a sum of sines and cosines. people didn't really believe it. >> yeah, it seemed sort of surprising to do arithmetic with waves.
4:41 pm
i mean, you're adding and subtracting things that aren't functions. that seems like a surprising idea to come up with. >> and it was even more than that, because it wasn't just, well, you take maybe three of these waves, which people maybe could think about, because it was like three things, but he was actually saying, you know, you could take an infinite number, is that right? >> you might even need an infinite number to get at what you're trying to construct. >> at that time, notions of like summing an infinite number of functions was a very complicated thing for people to think about. the real sort of stopping point for people were what we call questions of convergence, right? so if you add an infinite number of things, what are the conditions under which that could have a finite limit, something bounded? let's talk a little bit about, you know, fourier analysis of a simple function. fourier is claiming that this thing really is a sum of sines and cosines, so i mean, how does that work? >> so you can decompose it. so you take your squiggly thing, and using fourier analysis, you can decompose it into its fundamental parts. and its parts will be simple sine waves or cosine waves.
4:42 pm
>> so fourier analysis is almost like a prism -- >> absolutely. >> is the way that i like to explain it sometimes, right? so in the sense that you can be given light, it passes through newton's old prism there, and there you see all the components, the sort of pure frequencies of light, right? >> you'll take your complicated function and, using this mathematics, pull it apart. so you might have a sine wave with a certain period as one of its fundamental parts, and then maybe a cosine with a slightly tighter frequency on there as another fundamental part. and it'll tell you how much of each of those show up. >> what does it mean to add waves and get another wave? >> let's start with two waves, just to make it small. so let's start with one wave that has one oscillation per unit, and let's add it to a wave that has two oscillations per unit. so we can start with those two. and so we have these two waves. how do we add them together? they're not numbers, it seems a little odd. >> and i also notice that one of them is sort of bigger than the other. >> so one of them has an amplitude of 3, and the other has an amplitude of 1, so one of
4:43 pm
them, the bottom one there, is going to oscillate a little bit with less amplitude there. >> so there are a number of parameters, actually, that we need to describe any wave. so we're going to be talking about sine waves, so our waves are pinned at one end. >> absolutely, yeah. >> and then there's the maximum height they can go to. >> so that's your amplitude. >> and then there's the number of times we sort of fit it into an interval, and that's the -- >> that's your frequency. >> so we've got waves of different frequencies, different amplitudes -- >> but both sines. so we'll make it easy. yeah, so let's start where they're both pinned, and we'll start adding there, because it's the easy part, right? so they're both pinned all the way on the left, so how do we add those two waves together there? you just start with that point where they both start, and how high are they away from that axis that they oscillate around? they're on it. >> they're on it. >> so they're not any height. so they're both 0 value there. so add those zeros together, and that's your first point in the sum. and now cruise along and choose any other point on that axis that they both oscillate around, and then, see the height of the first function above that point? check out the height of the second function. >> so those are going to be two numbers, a positive if it's
4:44 pm
above, a negative if it's below, and i'm just going to add them? >> you add them together and then plot it above, yeah. >> right, and so there's the sum of those two waves directly calculated beneath it. and so now we're going to do it at every single point along the curves, right? >> mm-hmm, and just bring it all the way across. >> there we go. wave one plus wave two is wave three. so not really much different from adding numbers, ultimately. >> nope, there's just a lot of them, yeah. >> right. infinitely many, in fact. >> indeed. >> we did use simple addition on the one direction, but going backwards actually requires calculus. >> absolutely. >> but machines do it. those are exactly sort of the machines that show us, for example, that when you hear a tone from an instrument, that it's composed of particular frequencies of particular amounts, right? and there's a fundamental algorithm which is very near and dear to me, because it's my work, which does this, and it's called the fast fourier transform, which really underlies sort of all of modern digital technology. >> it undoes all of your odd waveforms into their component pieces. >> and you can start
4:45 pm
manipulating the frequencies. [ synthesizer plays ] >> welcome to moog music. we build analog musical synthesizers in the tradition of bob moog, who is one of the pioneers of electronic music. my name is cyril lance, and i'm a design engineer here. let's take a little tour of the factory. all right, here we are out on the production floor. this is where we build all our synthesizers and musical equipment. this is where we install all the circuit boards, and aaron is taking our front panels and putting everything together so that we can start attaching the actual circuits. synthesizers, as we make them, are electronic instruments. and they can have the form of a keyboard or they can have the form of a module that can be controlled by many things: pedals, any type of input device. the synthesizers create sine waves.
4:46 pm
a sine wave is a periodic waveform, and it's really one of the pure waveforms. sine waves relate to fourier series, which is a big, big deal in the kind of fusion of math and sound. fourier came up with this equation that said any arbitrary function or complex waveform that varies in time can be described with a series of cosines and sines. this was a very, very powerful mathematical leap at the time, and it really has had profound effects on everything we do in terms of electronics, because basically it means that we can break down any phenomenon that we either observe or want to create in nature into a set of sines and cosines. acoustic instruments typically are limited in their sound capability by the physics of an instrument. for instance, an acoustic guitar can only vibrate in certain ways, and when you hit a string, that string can only oscillate in certain modes and excite certain frequency resonances of the cavity of the guitar, same
4:47 pm
as a violin or a bass or a flute. an electronic instrument usually has a lot wider variety of expression and tones that it can get. this is close to a sine wave here. like a single oscillator making a periodic waveform that i can control the amplitude to, which is how loud it is -- louder and softer -- and the frequency of, if i play an octave down, you see, the frequency is how many times per second that waveform vibrates. so in our synthesizers, i can take an oscillator, but i can also change the shape. so you can see that just by varying the way the waveform looks, you can get a lot of different types of sounds. this is a square wave, which is a really recognizable sound in electronic music. this has kind of got a buzzy edge to it, and you can see it's got a lot of harmonic content to it, which means that there's a lot of sines and cosines going
4:48 pm
out into a high frequency. if i break that down and just add the first sine wave, you see that the major sine wave has a period the same as the square wave, but it doesn't sound like a square wave. now i've added something at twice the frequency, it kind of looks like a molar of a tooth, but you can see it's a lot closer to a square wave now. and as i keep adding higher and higher frequency sine waves, you can hear that it's getting to und more and more like a square wave, and as you see, the additive wave form, the sum of all those sines, is looking more and more like a square wave. so i keep going, you can even hear the higher harmonics coming up here. hear "wee-wee-wee," way up high? and the higher you go, the closer and closer it gets to a square wave. and now, if you keep adding a whole bunch of them, it sounds a lot like a square wave. so let me turn that off, because it gets annoying listening to a square wave like that.
4:49 pm
so that's kind of a good demonstration of how sine waves and cosine waves, when you add them together in a proper way, can approximate a waveform. we're in a very exciting point in the history of electronic music, because there is so much capability. moog is dedicated to expanding the sound vocabulary, giving musicians the ability to create sounds that nobody's ever heard before. so using these basic math inciples, our mission is to expand the vocabulary that musicians and human beings can use to create sounds. >> now, that was great. so this really is fourier analysis in action, right? >> i would love to be able to do that for a doughnut shape, to be able to control exactly what sounds i'm hearing. it's wonderful to see someone who can actually produce the sounds, the frequencies, and the waveforms at the same time. >> he really feels like he's really manipulating sines and cosines. >> that's great that you could
4:50 pm
give him a waveform and he can come up with a sound that fits that wave form; it's just wild. >> so this discussion that we've been having is starting to resonate with me, for lack of a better word, and resonating back to what we talked about originally with the greeks. so the greeks had this mystical feeling. i mean, mystical as well as sort of, you know, sensory, that strings that were of commensurate length would sound nice together if you plucked them, okay, that they'd be harmonious. and in fact, we sort of see that mathematically, they were sort of right with this work, right? >> those frequencies are integral multiples of each other, so you're getting a very nice progression of frequencies mathematically coming off of the string, yeah. >> that's right, so what we're seeing here in the overtones is that -- so we're getting multiples of frequencies, so we are actually seeing this kind of integer relation between them. >> even though the sound of a violin is coming from a much more complicated shape than a simple string, you still get to have that nice progression of frequencies. >> with the instruments, we've
4:51 pm
been folding in now a little bit of two-dimensional stuff, is that right? >> it's even three-dimensional. think of interior of a violin resonating. what are the harmonics of that sort of piece of space? and for me what it would mean is just the -- there are natural ways waves propagate through that space, and they're associated to frequencies, so to me the harmonics of the interior of that violin are just those frequencies of the waves that fit nicely inside the violin. >> now, a musician, an expert in music, could clearly hear the sounds off the violin, off the bass, and say, "all right, that one's a violin, that one's a bass," even if they were both trying to play a, for example. but this very general question of, you know, does the frequency content sort of identify the source is one that you've been thinking about, right? >> mm-hmm, so a fun thing you can do is take a piece of paper, cut out whatever shape you want. so if you're feeling simple, you could do a square or a disc or something like that, and each of those will have their own harmonics. >> okay, so i've got my scissors and i make these patterns, and now i create drums that look just like those patterns, maybe
4:52 pm
two drums like that. and so now you're telling me, or we're hoping, in fact, that what i could do is i could thwack those two drums and have a blindfold, you have a blindfold, and you say, "oh, that one came from the circle, and that one came from the square." >> what you could do is you thwack each of your shapes and you write down the frequencies. so it could be an infinite list of frequencies that you're hearing, so you have that sound, and then with those frequencies, those numbers, maybe there's a hope of figuring out which shape you're working with. you can hear things like the perimeter, so how far it is around if you were to walk around the edge of these things. and you're also lucky enough to hear the area, so you can -- >> well, that's totally cool. >> there's stuff you can hear. yeah, and comes from a really careful study of basically heat analysis for that particular thing, so those are the tools involved. >> and going back to fourier, the man obsessed with heat, so the idea there is that sort of imagining how heat flows on these two shapes, that knowing something about the flow on those two shapes will tell you the perimeter? >> mm-hmm. >> aha, so it will tell you the length around it and it'll tell
4:53 pm
you the area. and so it sort of speaks to the real title of the kind of work that you do, spectral geometry, because it's really this total mix of spectral analysis, i.e., thinking about notions of frequency, but meshing them with ideas of geometry. now, we've been working with this kind of surface, but now we could talk about a closed surface like a beach ball, for example, and you can thwack it just like that, and then there's presumably some analog of everything we've done here, right, and those are the spherical harmonics? >> mm-hmm, yep. so one i like to imagine is if you have a sphere and it pinches in along the waist, it kind of stretches out as it oscillates, so it's kind of going up and going out again, going up and going out. so spheres oscillate. that's perfectly fine. they have ways that they'll prefer to oscillate. >> you know, these spherical harmonics that people are now using those things to basically try to understand what the universe sounds like, so that there's this cosmic microwave background which is vibrating throughout the entire universe,
4:54 pm
and then understanding that in terms of its harmonics ends up being a deep question related to cosmology and the big bang. >> and at the small scale, you could use the spherical harmonics to understand how electrons move between energy shells in an atom, for example. so you have orbitals that also use the harmonics of a sphere. >> so we have strings, but not quite string theory. >> no. >> but then we go from electrons, right, and we sort of stop at musical instruments, and then we proceed out to the universe, right? and it's all harmonics. >> yep, it's all there. >> totally cool. >> yeah, it's really cool. >> thanks, liz. >> yep, thank you. >> the greeks' idea of the music of the spheres, the idea that there must be some connection between music and the workings of the heavens, was based on the mystical numerology of philosophers like pythagoras. ironically, even though their explicit declarations of rational orbits analogizing the relative lengths of harmonious strings was wrong, their instinct was correct. while there isn't really a music of the spheres, there is a song
4:55 pm
of the universe, a steady hum that you hear no matter where you turn your ear, or rather, your microwave detector. that's what robert wilson and arno penzias discovered in the mid-1960s at bell labs. they aimed a radio antenna at the sky and noticed that no matter where they pointed it, they received the same steady microwave signal, which sounded like static. with the help of some princeton physicists, they realized that this wasn't any old static, rather it was very likely to be the spectral remnants of the big bang, the leftover vibrations from that initial explosion of densely packed energy that presumably gave us our universe. for this discovery of the cosmic microwave background, penzias and wilson received the nobel prize in physics in 1978. the connection to music lies in fourier analysis, or more properly, fourier analysis as it is created in the setting of a sphere, which is how we analyze the microwave background.
4:56 pm
fourier analysis as we've been describing it is about periodic functions, those regularly repeating patterns in time. fourier showed that these could be broken up into sinusoids of different frequencies. on a sphere, rather than get sinusoids, spherical symmetry leads to functions called "spherical harmonics," discovered by the great french mathematician pierre-simon laplace. the secret to the origins of the universe may very well lie in the highest frequency harmonics of the cosmic microwave background. the analogy between the sinusoids and the spherical harmonics is very precise. whereas the sinusoids end up being the solutions of the wave equation on a line, the spherical harmonics work for a wave equation defined on a sphere. sinusoids describe waves on a string, and spherical harmonics describe waves on a ball. as the greeks contemplated the mathematics of music, their ideas went beyond the mere creation of sound that pleases the ear to a model of the outer
4:57 pm
reaches of the cosmos, where the stars, the sun, and the planets were thought to dance in harmony to the beat of an inaudible "music of the spheres." today we know that this mathematics of sound goes far beyond sound waves. we've discovered that there are many different kinds of waves -- waves that vibrate in purely mathematical worlds and waves that surround us in our world, some which we can perceive directly, and others that we can only detect with technology the greeks never could have imagined -- all unified by mathematics. captions by lns captioning portland, oregon www.lnscaptioning.com
4:58 pm
4:59 pm
>> for information about this and other annenberg media programs, call... and visit us at...
5:00 pm
left
right